Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats

Author:

Hsu Wen-Lin12,Lin Yu-Chieh3,Jeng Jing-Ren4,Chang Heng-Yuan5,Chou Tz-Chong678

Affiliation:

1. School of Medicine, Tzu Chi University, Hualien, Taiwan

2. Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan

3. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan

4. Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan

5. School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan

6. Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan

7. Department of Biotechnology, Asia University, Taichung, Taiwan

8. China Medical University Hospital, China Medical University, Taichung, Taiwan

Abstract

Baicalein (BE) extracted from Scutellaria baicalensis Georgi is able to alleviate various cardiovascular and inflammatory diseases. However, the effects of BE on pulmonary arterial hypertension (PAH) remain unknown. Therefore, the present study aimed to examine whether BE ameliorates pneumonectomy and monocrotaline-induced PAH in rats and further investigate the underlying molecular mechanisms. Administration of BE greatly attenuated the development of PAH as evidenced by an improvement of its characteristic features, including elevation of right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling. Moreover, the increased protein expression of endothelin-1 (ET-1) and ETA receptor (ETAR), superoxide overproduction, and activation of Akt/ERK1/2/GSK3[Formula: see text]/[Formula: see text]-catenin pathway that occurred in the lungs of PAH rats were markedly reversed by BE treatment. Compared with the untreated PAH rats, higher expression of endothelial nitric oxide synthase (eNOS), but lower levels of inducible nitric oxide synthase and vWF were observed in BE-treated PAH rats. Collectively, treatment with BE remarkably attenuates the pathogenesis of PAH, and the protection of BE may be associated with suppressing Akt/Erk1/2/GSK3[Formula: see text]/[Formula: see text]-catenin/ET-1/ETAR signaling and preventing endothelial dysfunction. These results suggest that BE is a potential agent for treatment of PAH.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3