Baicalin Inhibits Coxsackievirus B3 Replication by Reducing Cellular Lipid Synthesis

Author:

Wang Meng-Jie1,Yang Chun-Hua2,Jin Yue3,Wan Chang-Biao3,Qian Wei-He3,Xing Fei3,Li Xiang3,Liu Yuan-Yuan45

Affiliation:

1. Department of Clinical Laboratory, Lian’shui County People’s Hospital, 6 East of Hongri Avenue, Huai’an, Jiangsu 223400, P. R. China

2. Department of Clinical Laboratory, Huai’an Hospital of Huaian District, 14 Yuemiao East Street, Huai’an, Jiangsu 223200, P. R. China

3. Department of Clinical Laboratory, The Affiliated Huai’an Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, Jiangsu 223002, P. R. China

4. Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizhi Street, Suzhou, Jiangsu 215006, P. R. China

5. Department of Endocrinology, Huai’an First Affiliated Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian, Jiangsu 223300, P. R. China

Abstract

Baicalin is a flavonoid extracted from Scutellariae Radix and shows a variety of biological activities as reducing lipids, diminishing inflammation, and inhibiting bacterial infection. However, there is no report of baicalin against CVB3 infection. In this study, we found that baicalin can reduce viral titer in a dose-dependent manner in vitro at a dose with no direct virucidal effect. Moreover, we revealed that baicalin can also improve survival rate, reduce heart weight/body weight ratio, prevent virus replication, and relieve myocardial inflammation in the acute viral myocarditis mouse model induced by CVB3. Then, in order to explore the mechanism of baicalin inhibiting CVB3 replication, we respectively examined the expression of autophagosome marker LC3-II by Western blot, tested the concentration of free fatty acid (FFA) and cholesterol (CHO) by commercial kits, detected the mRNA levels of fatty acid synthase (Fasn) and acetyl coenzyme a carboxylase (ACC) by RT-PCR, and observed the lipid content of cells by fluorescence staining. The results showed that CVB3 infection increased autophagosome formation and lipid content in HeLa cells, but these changes were significantly blocked by baicalin. Finally, in order to confirm that baicalin inhibits viral replication and reduces autophagosome formation by reducing cellular lipids, we added exogenous palmitate to cell culture supernatants to promote intracellular lipid synthesis and found that palmitate did not alter LC3-II and CVB3/VP1 expression in HeLa cells with or without CVB3 infection. Interestingly, palmitate can reverse the inhibitory effect of baicalin on autophagosome formation and viral replication. In conclusion, our results indicated that lipids play an important role in CVB3 replication, and the effect of baicalin against CVB3 was associated with its ability to reduce cellular lipid synthesis to limit autophagosome formation.

Funder

Huai'an Natural Science Foundation

Nanjing Medical University Natural Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3