4-Acetylantrocamol LT3, a New Ubiquinone from Antrodia cinnamomea, Inhibits Hepatocellular Carcinoma HepG2 Cell Growth by Targeting YAP/TAZ, mTOR, and WNT/β-Catenin Signaling

Author:

Chen Yen-Lin12,Yen I-Chuan3,Lin Kuen-Tze14,Lai Feng-Yi5,Lee Shih-Yu15

Affiliation:

1. Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan

2. Department of Radiology, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taipei, Taiwan

3. School of Pharmacy, National Defense Medical Center, Taipei, Taiwan

4. Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan

5. Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan

Abstract

4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from the mycelium of Antrodia cinnamomea (Polyporaceae), has been recently shown to possess anticancer activity. However, the detailed mechanisms of such action remain unclear. In this study, the molecular mechanisms of 4AALT3 on hepatocellular carcinoma cells (HCC) were investigated. Human hepatocellular carcinoma cell line HepG2 cells were treated with concentrations of 4AALT3. Cell viability, colony formation, and the underlying mechanisms were then analyzed by CCK-8, colony formation, qPCR, and Western blotting assays. We found that 4AALT3 significantly decreased cell viability and colony formation in a dose-dependent manner. Accordingly, 4AALT3 significantly decreased protein levels of cyclin B, E1, D1, and D3, thereby facilitating cell cycle arrest. In addition, 4AALT3 significantly suppressed the nuclear localization of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), mammalian target of rapamycin (mTOR), and WNT/[Formula: see text]-catenin signaling pathways, all of which are well-known signaling pathways that contribute to the malignant properties of HCC. These effects are associated with activation of 5′ AMP-activated protein kinase (AMPK) and autophagy. Our findings indicate that 4AALT3 exerts inhibitory effects on HepG2 cell growth via multiple signaling pathways and may be a potential agent for HCC therapy.

Funder

Taoyuan Armed Forces General Hospital

Ministry of National Defense-Medical Affairs of Taiwan

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3