Dioscin, a Steroidal Saponin Isolated from Dioscorea nipponica, Attenuates Collagen-Induced Arthritis by Inhibiting Th17 Cell Response

Author:

Cao Yong-Jun1,Xu Ying2,Liu Bei2,Zheng Xi2,Wu Jian1,Zhang Ying2,Li Xiao-Si2,Qi Yan3,Sun Yu-Meng1,Wen Wei-Bo2,Hou Lifei3,Wan Chun-Ping2

Affiliation:

1. Department of Rheumatology, Nantong Hospital Affiliated to Nanjing, University of Traditional Chinese Medicine, Nantong, Jiangsu 226001, P. R. China

2. The No. 1 Affiliated Hospital of Yunnan, University of Traditional Chinese Medicine, Kunming 650021, P. R. China

3. Program in Cellular and Molecular Medicine, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA

Abstract

Dioscin, a steroidal saponin isolated from Dioscorea nipponica Makino, has previously been shown to possess antiarthritic effects. However, the underlying mechanism is still elusive. Herein, we investigated the therapeutic effects of dioscin on collagen-induced arthritis (CIA) in DBA/1 mice and related mechanism. Cytokine production in CII-specific immune responses were measured by enzyme-linked immunosorbent assay (ELISA); Th17 cell-related gene expression, including IL-17A, ROR[Formula: see text] and IL-23p19, were detected by qPCR analysis; Surface marker, T regulatory (Treg) cells and intracellular cytokines (IL-17A and IFN-[Formula: see text]) were evaluated by flow cytometry. We performed Th17 cell differentiation assay in vitro. Results showed that, in vivo, dioscin treatment significantly reduced the severity of CIA, which was accompanied by decreased Th17 response, but not Th1 and Treg response; dioscin-treated mice also showed lower percentage of CD11b[Formula: see text] Gr-1[Formula: see text] neutrophils; In vitro, dioscin treatment suppressed the differentiation of naive CD4[Formula: see text] T cells into Th17 cell and decreased IL-17A production. Collectively, our results indicate that dioscin exerts antiarthritic effects by inhibiting Th17 cell immune response.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3