Total Flavonoids of Astragalus Inhibit Activated CD4+ T Cells and Regulate Differentiation of Th17/Th1/Treg Cells in Experimental Autoimmune Encephalomyelitis Mice by JAK/STAT and NFκB Signaling Pathways

Author:

Han Xin-Yan1,Xu Nuo1,Yuan Jin-Feng1,Wu Hui1,Shi Hai-Lian1,Yang Liu21,Wu Xiao-Jun1

Affiliation:

1. Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE), Key Laboratory for Standardization of Chinese Medicines Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China

2. Central Laboratory, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P. R. China

Abstract

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by CD4[Formula: see text] T cell-mediated immune cell infiltration and demyelination in the central nervous system (CNS). The subtypes of CD4[Formula: see text] T cells are T helper cells 1 (Th1), Th2, Th17, and regulatory T cells (Treg), while three other types of cells besides Th2 play a key role in MS and its classic animal model, experimental autoimmune encephalomyelitis (EAE). Tregs are responsible for immunosuppression, while pathogenic Th1 and Th17 cells cause autoimmune-associated demyelination. Therefore, suppressing Th1 and Th17 cell differentiation and increasing the percentage of Treg cells may contribute to the treatment of EAE/MS. Astragali Radix (AR) is a representative medicine with immunoregulatory, anti-inflammatory, antitumor, and neuroprotective effects.The active ingredients in AR include astragalus flavones, polysaccharides, and saponins. In this study, it was found that the total flavonoids of Astragus (TFA) could effectively treat EAE in mice by ameliorating EAE motor disorders, reducing inflammatory damage and demyelination, inhibiting the proportion of Th17 and Th1 cells, and promoting Tregs differentiation by regulating the JAK/STAT and NF[Formula: see text]B signaling pathways. This novel finding may increase the possibility of using AR or TFA as a drug with immunomodulatory effects for the treatment of autoimmune diseases.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3