Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma

Author:

Li Xin1ORCID,He Xue1ORCID,Lin Bing1ORCID,Li Li1ORCID,Deng Qifeng1ORCID,Wang Chengzhi2ORCID,Zhang Jing1ORCID,Chen Ying1ORCID,Zhao Jingyi1ORCID,Li Xinrui1ORCID,Li Yan1ORCID,Xi Qing34ORCID,Zhang Rongxin1ORCID

Affiliation:

1. Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China

2. Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin 300203, P. R. China

3. Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, P. R. China

4. School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510641, P. R. China

Abstract

Quercetin (3,3[Formula: see text],4[Formula: see text],5,7-pentahydroxyflavone) is a bioactive plant-derived flavonoid, abundant in fruits and vegetables, that can effectively inhibit the growth of many types of tumors without toxicity. Nevertheless, the effect of quercetin on melanoma immunology has yet to be determined. This study aimed to investigate the role and mechanism of the antitumor immunity action of quercetin in melanoma through both in vivo and in vitro methods. Our research revealed that quercetin has the ability to boost antitumor immunity by modulating the tumor immune microenvironment through increasing the percentages of M1 macrophages, CD8[Formula: see text] T lymphocytes, and CD4[Formula: see text] T lymphocytes and promoting the secretion of IL-2 and IFN-[Formula: see text] from CD8[Formula: see text] T cells, consequently suppressing the growth of melanoma. Furthermore, we revealed that quercetin can inhibit cell proliferation and migration of B16 cells in a dose-dependent manner. In addition, down-regulating PDK1 can inhibit the mRNA and protein expression levels of CD47. In the rescue experiment, we overexpressed PDK1 and found that the protein and mRNA expression levels of CD47 increased correspondingly, while the addition of quercetin reversed this effect. Moreover, quercetin could stimulate the proliferation and enhance the function of CD8[Formula: see text] T cells. Therefore, our results identified a novel mechanism through which CD47 is regulated by quercetin to promote phagocytosis, and elucidated the regulation of quercetin on macrophages and CD8[Formula: see text] T cells in the tumor immune microenvironment. The use of quercetin as a therapeutic drug holds potential benefits for immunotherapy, enhancing the efficacy of existing treatments for melanoma.

Funder

the National Natural Science Foundation of China

Prevention and Control Project for COVID-19 pneumonia

Department of Science and Technology of Guangdong Province

The project funded by China Postdoctoral Science Foundation through

Foundation of the First Affiliated Hospital of Guangdong Pharmaceutical University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3