Mechanisms of Vitexin Preconditioning Effects on Cultured Neonatal Rat Cardiomyocytes with Anoxia and Reoxygenation

Author:

Dong Liu-Yi1,Chen Zhi-Wu1,Guo Yan1,Cheng Xin-Ping2,Shao Xu3

Affiliation:

1. Department of Pharmacology, Anhui Medical University, Hefei, Anhui 230032, China

2. Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230036, China

3. Hefei Qi-xing Medicine and Technology Co. Ltd., Hefei, Anhui 230088, China

Abstract

This study was aimed at investigating the protective effect and mechanism of vitexin preconditioning (VPC) on cultured neonatal rat cardiomyocytes after anoxia and reoxygenation (A/R). An A/R model was established by using cultured neonatal rat cardiomyocytes. Cellular injury was evaluated by measuring cell viability, the releases of creatine kinase (CK), and lactate dehydrogenase (LDH). The apoptosis rate of cardiomyocytes after Anoxia/reoxygenation and the activities of extracellular signal-regulated protein kinases (ERKs) were measured. The intracellular calcium indicated by the fluorescence in cardiomyocytes was measured by the laser confocal microscope. Vitexin preconditioning (10, 30 and 100 μM) significantly enhanced the cell viability, markedly inhibited A/R-induced increases of LDH and CK release, obviously decreased the number of apoptotic cardiomyocytes and markedly decreased the fluorescence intensity value of [ Ca2+]iin cardiomyocytes. Exposure to anoxia or vitexin preconditioning significantly increased the phospho-ERK level, and the increase was markedly inhibited by PD98059, an inhibitor of the upstream kinase of ERK. These results suggest that vitexin preconditioning has a protective effect on cardiomyocytes A/R injury through the improvement of cell viability, decrease of LDH and CK release, such that the protective mechanism may relate to its ability to inhibit the cardiomyocytes apoptosis, reduce the cardiomyocytes calcium overload and increase the abundance of phosphor-ERK1/2 of the cardiomyocytes after anoxia and reoxygenation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3