Modulation of the Tumor Metastatic Microenvironment and Multiple Signal Pathways by Prunella vulgaris in Human Hepatocellular Carcinoma

Author:

Su Yu-Chieh1,Lin I-Hsin2,Siao Yu-Miao3,Liu Ching-Ju3,Yeh Chia-Chou32

Affiliation:

1. Division of Hematology-Oncology, Department of Internal Medicine, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan

2. School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan

3. Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan

Abstract

Prunella vulgaris (PV) is a traditional Chinese medicine that has been used clinically for centuries in Asian countries to treat herpetic keratitis. In previous studies, PV was shown to suppress TPA-induced activation of MMP-9 and inhibit cell invasion and migration in hepatoma cell lines. However, the detailed molecular mechanism underlying these effects is still unclear. In this study, we investigated the mechanisms underlying PV-mediated inhibition of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (Huh-7 and HA22T). PV suppressed VEGF and MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) activity. PV suppressed TPA-induced AP-1 activity by inhibiting phosphorylation of the extracellular signal-related kinase (ERK), downregulating p38 signaling pathways, and suppressing TPA-induced inhibition of NF-[Formula: see text]B nuclear translocation through I[Formula: see text]B. PV suppressed TPA-induced activation of ERK/phosphatidylinositol-3-kinase/Akt upstream of NF-[Formula: see text]B and AP-1. These data suggest that PV modifies the metastatic microenvironment of hepatocellular carcinoma (HCC) by inhibiting multiple signal transduction pathways. PV thus may have the therapeutic potential to inhibit the migration and invasion of HCC and act as potential agent for systemic therapies.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3