Algorithm for Solving the Component Assignment Problem in a Multistate Sliding Window System

Author:

Nakamura Taishin1

Affiliation:

1. School of Information Science and Technology, Tokai University, Kanagawa, Japan

Abstract

The multistate sliding window system (SWS) comprises [Formula: see text] multistate components arranged in a line; each group of [Formula: see text] consecutive multistate components is considered as a window. If the total performance rate in a window does not meet the predetermined demand [Formula: see text], then that window is regarded as a failure. The SWS fails if and only if there exists at least one failed window. Several researchers have considered the component assignment problem for the SWS with the aim of finding an appropriate component arrangement that maximizes system reliability. Such an arrangement is called the optimal arrangement. Although several metaheuristic and heuristic algorithms have been proposed, an exact algorithm for solving the component assignment problem of the SWS has not been developed thus far. Therefore, in this study, a branch-and-bound-based algorithm is developed to determine the optimal arrangement of the SWS efficiently. Furthermore, a recursive method is proposed to compute the system reliability. Combining the branch-and-bound-based algorithm with the recursive method enables reduction of the complexity of the reliability computations for determining the optimal arrangement. To investigate the efficiency of the branch-and-bound-based algorithm, numerical experiments were conducted; it was observed that the parameters [Formula: see text] and [Formula: see text] have the maximum effect on computation time, whereas parameter [Formula: see text] has minimal effect. The proposed algorithm is useful for improving the reliability of a practical system that can be expressed as an SWS. In addition, the optimal arrangements can be used to measure the heuristic and metaheuristic performances because they guarantee global optimality.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3