A FRAMEWORK FOR CAPTURING DEGRADATION BEHAVIOR IN RELIABILITY-BASED ROBUST DESIGN OPTIMIZATION

Author:

YADAV OM PRAKASH1,BHAMARE SUNIL S.2,RATHORE AJAY PAL SINGH2

Affiliation:

1. Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58108, USA

2. Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur-302017, India

Abstract

The increasing customer awareness and global competition have forced manufacturers to capture the entire life cycle issues during product design and development stage. The thorough understanding of product behavior (degradation process) and various uncertainties associated with product performance is paramount to produce reliable and robust design. This paper proposes a multi-objective framework for reliability-based robust design optimization, which captures degradation behavior of quality characteristics to provide optimal design parameters. The objective function of the multi-objective optimization problem is defined as quality loss function considering both desirable and undesirable deviations between target values and the actual results. The degradation behavior is captured by using empirical model to estimate amount of degradation accumulated in time t. The applicability of the proposed methodology is demonstrated by considering a leaf spring design problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quality and Reliability Evolution of Electronic Components;Electrotehnica, Electronica, Automatica;2022-05-15

2. Reliability building of discrete electronic components;Reliability Characterisation of Electrical and Electronic Systems;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3