Affiliation:
1. School of Statistics, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, P. R. China
Abstract
Since software system is becoming more and more complex than before, performance degradation and even abrupt download, which are called software aging phenomena, bring about a great deal of economic loss. To counter these problems, some methods are used. Support vector machine is an effective method to tackle software aging problems, but its performance is influenced by the selection of hyper-parameters. A method is proposed to optimize the hyper-parameter selection of support vector machine in this work. The proposed method which is used as a training algorithm to optimize the parameter selection of support vector machine, utilizes the global exploration power of firefly method to achieve faster convergence and also a better accuracy. In the experiment, we use two metrics to test the effect of the proposed method. The results indicate that the presented method owns the highest accuracy in both the available memory prediction and heap memory prediction of Web server for software aging predictions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis and Prediction of Drivers' Braking Behavior with Different Experience at Right-Angled Turns;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14
2. A Novel Support-Vector-Machine-Based Grasshopper Optimization Algorithm for Structural Reliability Analysis;Buildings;2022-06-19
3. Early Detection of Product Reliability Based on the Parameters of the Production Line and Warranty Data;International Journal of Reliability, Quality and Safety Engineering;2021-06-21