Performance Prediction by an SVM with a Firefly Optimization Method

Author:

Yan Yongquan1

Affiliation:

1. School of Statistics, Shanxi University of Finance and Economics, Taiyuan, Shanxi 030006, P. R. China

Abstract

Since software system is becoming more and more complex than before, performance degradation and even abrupt download, which are called software aging phenomena, bring about a great deal of economic loss. To counter these problems, some methods are used. Support vector machine is an effective method to tackle software aging problems, but its performance is influenced by the selection of hyper-parameters. A method is proposed to optimize the hyper-parameter selection of support vector machine in this work. The proposed method which is used as a training algorithm to optimize the parameter selection of support vector machine, utilizes the global exploration power of firefly method to achieve faster convergence and also a better accuracy. In the experiment, we use two metrics to test the effect of the proposed method. The results indicate that the presented method owns the highest accuracy in both the available memory prediction and heap memory prediction of Web server for software aging predictions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Prediction of Drivers' Braking Behavior with Different Experience at Right-Angled Turns;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

2. A Novel Support-Vector-Machine-Based Grasshopper Optimization Algorithm for Structural Reliability Analysis;Buildings;2022-06-19

3. Early Detection of Product Reliability Based on the Parameters of the Production Line and Warranty Data;International Journal of Reliability, Quality and Safety Engineering;2021-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3