Using Process Capability Indices to Develop the Execution Models of DMAIC Process

Author:

Chen Kuen-Suan123,Liu Chin-Chia4,Chen Chi-Han4,Yu Chun-Min1

Affiliation:

1. Department of Industrial Engineering and Management, National Chin-Yi University of Technology, 57, Section 2, Zhongshan Road, Taiping, Taichung 411030, Taiwan, R.O.C

2. Department of Business Administration, Chaoyang University of Technology, 168, Jifeng E Road, Wufeng, Taichung 413310, Taiwan, R.O.C

3. Department of Business Administration, Asia University, 500, Lioufeng Road, Wufeng, Taichung 413305, Taiwan, R.O.C

4. Department of Industrial Education and Technology, National Changhua University of Education, No. 2, Shi-Da Road, Changhua, Changhua 50074, Taiwan, R.O.C

Abstract

The method of six-sigma and the index of process capability are both commonly used tools in the industrial community. Process engineers can follow five improvement steps of the six-sigma method, including “define”, “measure”, “analyze”, “improve”, and “control” (DMAIC), aiming to improve and enhance the process quality. However, none of these five improvement steps have a clear corresponding approach. This paper considered process capability indices not only a process quality evaluation tool widely used in the industrial community but also a process quality evaluation and analysis tool adopted by internal engineers. Therefore, this paper applied the method integrating process capability indices and statistical testing to develop execution models for the five improvement steps, DMAIC, of the six-sigma method. First, this paper, based on the concept of yield, not only deduced the relationship between the required value of the process capability index for the product and the process capability index value of the individual quality characteristic but also discussed the definition of the quality level of six-sigma as well as its relationship with the process capability index. Next, according to these results, five improvement execution models of the six-sigma method were developed and served as a reference for the process engineers in the industry to promote the performance of the six-sigma project. The proposed method in this paper applied various normal processes and combined the six-sigma method and process capability indices, both of which are tools commonly used in the industrial community. It also has taken into account the advantages of theoretical contribution and industrial acceptance.

Funder

Ministry of Science and Technology, Taiwan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3