Using Random Undersampling and Ensemble Feature Selection for IoT Attack Prediction

Author:

Leevy Joffrey L.1ORCID,Khoshgoftaar Taghi M.1,Hancock John1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA

Abstract

One consequence of the widespread use of Internet of Things (IoT) devices is an increase in the volume of attacks on IoT networks. In this study, we focus on the Bot-IoT dataset, with the aim of classifying its four types of attacks: Denial-of-Service (DoS), Distributed Denial-of-Service (DDoS), Reconnaissance, and Information Theft. Our contribution is based on the evaluation of the Random Undersampling (RUS) technique and ensemble Feature Selection Techniques (FSTs). Our results indicate that RUS has a positive impact on overall classification performance. Furthermore, our results show that the FSTs are beneficial for DoS, Reconnaissance, and Information Theft classification but not for DDoS classification. Finally, we note that the ensemble classifiers have generally outperformed the nonensemble classifiers in our study.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3