A BAYESIAN HYPOTHESIS TESTING APPROACH FOR FINDING UPPER BOUNDS FOR PROBABILITIES THAT PAIRS OF SOFTWARE COMPONENTS FAIL SIMULTANEOUSLY

Author:

KRISTIANSEN MONICA1,WINTHER RUNE2,NATVIG BENT3

Affiliation:

1. Østfold University College, 1757 Halden, Norway

2. Oslo Area, Norway

3. Department of Mathematics, University of Oslo, Norway

Abstract

Predicting the reliability of software systems based on a component-based approach is inherently difficult, in particular due to failure dependencies between software components. One possible way to assess and include dependency aspects in software reliability models is to find upper bounds for probabilities that software components fail simultaneously and then include these into the reliability models. In earlier research, it has been shown that including partial dependency information may give substantial improvements in predicting the reliability of compound software compared to assuming independence between all software components. Furthermore, it has been shown that including dependencies between pairs of data-parallel components may give predictions close to the system's true reliability. In this paper, a Bayesian hypothesis testing approach for finding upper bounds for probabilities that pairs of software components fail simultaneously is described. This approach consists of two main steps: (1) establishing prior probability distributions for probabilities that pairs of software components fail simultaneously and (2) updating these prior probability distributions by performing statistical testing. In this paper, the focus is on the first step in the Bayesian hypothesis testing approach, and two possible procedures for establishing a prior probability distribution for the probability that a pair of software components fails simultaneously are proposed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3