An Efficient Particle Swarm Optimization-Based Neural Network Approach for Software Reliability Assessment

Author:

Roy Pratik1,Mahapatra G. S.2,Dey K. N.1

Affiliation:

1. Department of Computer Science and Engineering, University of Calcutta, Kolkata 700106, India

2. Department of Mathematics, National Institute of Technology, Puducherry, Karaikal 609605, India

Abstract

In this paper, an artificial neural network (ANN)-based dynamic weighted combination model trained by novel particle swarm optimization (PSO) algorithm is proposed for software reliability prediction. Different software reliability growth models (SRGMs) are merged based on the weights derived by the learning algorithm of the proposed ANN. To avoid trapping in local minima during training of the ANN, we propose a neighborhood-based adaptive PSO (NAPSO) algorithm for learning of the proposed ANN in order to find global optimal weights. We conduct the experiments on real software failure data sets for validation of the proposed dynamic weighted combination model (PDWCM). Fitting performance and predictability of the proposed PSO-based neural network are compared with the conventional PSO-based neural network (CPSO) and existing ANN-based software reliability models. We also compare the performance of the proposed PSO algorithm with the CPSO algorithm through learning of the proposed ANN. Empirical results indicate that the proposed PSO and CPSO-based neural network present fairly accurate fitting and prediction capability than the other existing ANN-based software reliability models. Moreover, the proposed PSO-based neural network is most promising for the purpose of software fault prediction since it shows comparatively better fitting and prediction performance results than the other models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3