Affiliation:
1. Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
Abstract
The objective of this study was to create a method for studying cell–matrix interactions in a physiologically relevant 3D protein-based tissue construct that could be scaled up to perform large-scale screens, study cell–matrix interactions on a population basis, or be remodeled by cells to build larger tissues. We have developed an easy-to-use method to miniaturize protein-based tissue constructs that maintains the 3D in vitro environment, while alleviating several obstacles associated with larger avascular tissue constructs. In this study, we demonstrate that (i) cells can interact with the 3D environment both while encapsulated or while interacting only with the surface of the microtissues, (ii) encapsulated cells are highly viable and, for the first time, (iii) microtissues on this size scale (~200 μm) can be used to quantify cell contractility. This versatile platform should facilitate large-scale screens in 3D in vitro culture conditions for drug development and high throughput mechanistic biology.
Publisher
World Scientific Pub Co Pte Lt
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献