On Fourier integral operators with Hölder-continuous phase

Author:

Cordero Elena1,Nicola Fabio2,Primo Eva3

Affiliation:

1. Department of Mathematics, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy

2. Dipartimento di Matematica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy

3. Departament d’Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100-Burjassot, València, Spain

Abstract

We study continuity properties in Lebesgue spaces for a class of Fourier integral operators arising in the study of the Boltzmann equation. The phase has a Hölder-type singularity at the origin. We prove boundedness in [Formula: see text] with a precise loss of decay depending on the Hölder exponent, and we show by counterexamples that a loss occurs even in the case of smooth phases. The results can be seen as a quantitative version of the Beurling–Helson theorem for changes of variables with a Hölder singularity at the origin. The continuity in [Formula: see text] is studied as well by providing sufficient conditions and relevant counterexamples. The proofs rely on techniques from time-frequency analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3