Sufficient ensemble size for random matrix theory-based handling of singular covariance matrices

Author:

Kabán Ata1

Affiliation:

1. School of Computer Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK

Abstract

Singular covariance matrices are frequently encountered in both machine learning and optimization problems, most commonly due to high dimensionality of data and insufficient sample sizes. Among many methods of regularization, here we focus on a relatively recent random matrix-theoretic approach, the idea of which is to create well-conditioned approximations of a singular covariance matrix and its inverse by taking the expectation of its random projections. We are interested in the error of a Monte Carlo implementation of this approach, which allows subsequent parallel processing in low dimensions in practice. We find that [Formula: see text] random projections, where [Formula: see text] is the size of the original matrix, are sufficient for the Monte Carlo error to become negligible, in the sense of expected spectral norm difference, for both covariance and inverse covariance approximation, in the latter case under mild assumptions.

Funder

EPSRC

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3