Viscosity solutions to the inhomogeneous reaction–diffusion equation involving the infinity Laplacian

Author:

Lin Tao1,Liu Fang1

Affiliation:

1. Department of Mathematics, School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, P. R. China

Abstract

In this paper, we study the inhomogeneous reaction–diffusion equation involving the infinity Laplacian: [Formula: see text] where the continuous function [Formula: see text] satisfies [Formula: see text] a positive function [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text]. Such a model permits existence of solutions with dead core zones, i.e. a priori unknown regions where non-negative solutions vanish identically. For [Formula: see text] and the non-positive inhomogeneous term [Formula: see text] we establish the existence, uniqueness and stability of the viscosity solution of the corresponding continuous Dirichlet problem. Under additional structure conditions on [Formula: see text] and [Formula: see text] we obtain the optimal [Formula: see text] regularity across the free boundary [Formula: see text] Moreover, we establish the porosity of the free boundary and Liouville type theorem for entire solutions. Finally, we prove that the dead core vanishes in the limit case [Formula: see text]

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3