Affiliation:
1. Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China
Abstract
We investigate the distributed learning with coefficient-based regularization scheme under the framework of kernel regression methods. Compared with the classical kernel ridge regression (KRR), the algorithm under consideration does not require the kernel function to be positive semi-definite and hence provides a simple paradigm for designing indefinite kernel methods. The distributed learning approach partitions a massive data set into several disjoint data subsets, and then produces a global estimator by taking an average of the local estimator on each data subset. Easy exercisable partitions and performing algorithm on each subset in parallel lead to a substantial reduction in computation time versus the standard approach of performing the original algorithm on the entire samples. We establish the first mini-max optimal rates of convergence for distributed coefficient-based regularization scheme with indefinite kernels. We thus demonstrate that compared with distributed KRR, the concerned algorithm is more flexible and effective in regression problem for large-scale data sets.
Funder
National Natural Science Foundation of China
Joint Research Fund by National Natural Science Foundation of China and Research Grants Council of Hong Kong
Program of Shanghai Subject Chief Scientist
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献