Asymptotics of the Wilson polynomials

Author:

Li Yu-Tian1,Wang Xiang-Sheng2,Wong Roderick3

Affiliation:

1. School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China

2. Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70503, USA

3. Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Abstract

In this paper, we study the asymptotic behavior of the Wilson polynomials [Formula: see text] as their degree tends to infinity. These polynomials lie on the top level of the Askey scheme of hypergeometric orthogonal polynomials. Infinite asymptotic expansions are derived for these polynomials in various cases, for instance, (i) when the variable [Formula: see text] is fixed and (ii) when the variable is rescaled as [Formula: see text] with [Formula: see text]. Case (ii) has two subcases, namely, (a) zero-free zone ([Formula: see text]) and (b) oscillatory region [Formula: see text]. Corresponding results are also obtained in these cases (iii) when [Formula: see text] lies in a neighborhood of the transition point [Formula: see text], and (iv) when [Formula: see text] is in the neighborhood of the transition point [Formula: see text]. The expansions in the last two cases hold uniformly in [Formula: see text]. Case (iv) is also the only unsettled case in a sequence of works on the asymptotic analysis of linear difference equations.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Asymptotics of the Geometric Polynomials;Mathematica Slovaca;2023-03-31

2. Recent advances in asymptotic analysis;Analysis and Applications;2022-06-20

3. Asymptotics of orthogonal polynomials with asymptotic Freud‐like weights;Studies in Applied Mathematics;2019-12-06

4. Asymptotic approximations of the continuous Hahn polynomials and their zeros;Journal of Approximation Theory;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3