ASYMPTOTIC BEHAVIOR OF STRUCTURES MADE OF PLATES

Author:

GRISO GEORGES1

Affiliation:

1. Laboratoire Jacques-Louis Lions, CNRS & Université Pierre et Marie Curie (Paris VI), Boîte postale 187, 4, Place Jussieu, 75252 Paris Cedex 05, France

Abstract

The aim of this paper is to study the asymptotic behavior of a structure made of plates of thickness 2δ when δ → 0. This study is carried out within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of displacements of the structure and on the passing to the limit in fixed domains.We begin by studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a warping. An elementary displacement is linear with respect to the variable x3. It is written [Formula: see text] where [Formula: see text] is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ → 0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded strained tensor.Then, we extend these results to structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.p.s.d.) coincide with elementary rod displacements in the junctions. Any e.p.s.d. is given by two functions belonging to H1( S ; ℝ3) where S is the skeleton of the structure (the set formed by the mid-surfaces of the plates constituting the surface). One of these functions, [Formula: see text], is the skeleton displacement. We show that [Formula: see text] is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the flexion of the plates.Eventually, we pass to the limit as δ → 0 in the linearized elasticity system. On the one hand, we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic behavior of a plate with a non-planar top surface;Journal de Mathématiques Pures et Appliquées;2024-02

2. Decomposition of plate displacements via Kirchhoff–Love displacements;Mathematical Methods in the Applied Sciences;2023-07-17

3. Spectral and Evolution Analysis of Composite Elastic Plates with High Contrast;Journal of Elasticity;2022-11-30

4. Asymptotic analysis of a junction of hyperelastic rods;Asymptotic Analysis;2022-01-06

5. A Review on Rigorous Derivation of Reduced Models for Fluid–Structure Interaction Systems;Advances in Mathematical Fluid Mechanics;2020-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3