Weighted p-regular kernels for reproducing kernel Hilbert spaces and Mercer Theorem

Author:

Agud L.1,Calabuig J. M.2,Sánchez Pérez E. A.2

Affiliation:

1. Departamento de Matemática Aplicada, Universitat Politècnica de València, Campus de Alcoy, Valencia, Spain

2. Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Let [Formula: see text] be a finite measure space and consider a Banach function space [Formula: see text]. Motivated by some previous papers and current applications, we provide a general framework for representing reproducing kernel Hilbert spaces as subsets of Köthe–Bochner (vector-valued) function spaces. We analyze operator-valued kernels [Formula: see text] that define integration maps [Formula: see text] between Köthe–Bochner spaces of Hilbert-valued functions [Formula: see text] We show a reduction procedure which allows to find a factorization of the corresponding kernel operator through weighted Bochner spaces [Formula: see text] and [Formula: see text] — where [Formula: see text] — under the assumption of [Formula: see text]-concavity of [Formula: see text] Equivalently, a new kernel obtained by multiplying [Formula: see text] by scalar functions can be given in such a way that the kernel operator is defined from [Formula: see text] to [Formula: see text] in a natural way. As an application, we prove a new version of Mercer Theorem for matrix-valued weighted kernels.

Funder

Ministerio de Economia y Competitividad

Ministerio de Ciencia, Innovacion y Universidades

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast Kernel Least Mean Square Algorithm;2022 IET International Conference on Engineering Technologies and Applications (IET-ICETA);2022-10-14

2. On the solutions of boundary value problems;An International Journal of Optimization and Control: Theories & Applications (IJOCTA);2021-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3