Smoothed quantile regression with nonignorable dropouts

Author:

Ma Wei1,Wang Lei1

Affiliation:

1. School of Statistics and Data Science & LPMC, Nankai University, Tianjin 300071, P. R. China

Abstract

In this paper, we adopt a three-stage estimation procedure and statistical inference methods for quantile regression (QR) based on empirical likelihood (EL) approach with nonignorable dropouts. In the first stage, we consider a parametric model on the dropout propensity of response and handle the parameter identifiability issue by using nonresponse instrument. With the estimated dropout propensity, in the second stage the inverse probability weighting and kernel smoothing methods are applied to construct the bias-corrected and smoothed generalized estimating equations for nonignorable dropouts. In the third stage, borrowing the matrix expansion idea of quadratic inference function, we obtain the proposed estimators that can accommodate the within-subject correlations and improve the estimation efficiency simultaneously. A class of improved estimators and their confidence regions for QR coefficient are derived. Further, the penalized EL method and algorithm for variable selection are investigated. Simulation studies and a real example on HIV-CD4 data set are also provided to show the performance of the proposed estimators.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3