Zero inertia limit of incompressible Qian–Sheng model

Author:

Luo Yi-Long1,Ma Yangjun2

Affiliation:

1. School of Mathematics, South China University of Technology, Guangzhou 510641, P. R. China

2. School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, P. R. China

Abstract

The Qian–Sheng model is a system describing the hydrodynamics of nematic liquid crystals in the Q-tensor framework. When the inertial effect is included, it is a hyperbolic-type system involving a second-order material derivative coupling with forced incompressible Navier–Stokes equations. If formally letting the inertial constant [Formula: see text] go to zero, the resulting system is the corresponding parabolic model. We provide the result on the rigorous justification of this limit in [Formula: see text] with small initial data, which validates mathematically the parabolic Qian–Sheng model. To achieve this, an initial layer is introduced to not only overcome the disparity of the initial conditions between the hyperbolic and parabolic models, but also make the convergence rate optimal. Moreover, a novel [Formula: see text]-dependent energy norm is carefully designed, which is non-negative only when [Formula: see text] is small enough, and handles the difficulty brought by the second-order material derivative.

Funder

Research Fund from South China University of Technology

Research Fund from Chongqing Jiaotong University

Science and Technology Research Program of Chongqing Municipal Education Commission

National Natural Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3