Jointly low-rank and bisparse recovery: Questions and partial answers

Author:

Foucart Simon1,Gribonval Rémi23,Jacques Laurent4,Rauhut Holger5

Affiliation:

1. Texas A&M University, USA

2. Univ Rennes, Inria, CNRS, IRISA, France

3. Univ Lyon, Inria, CNRS, ENS de Lyon, UCB Lyon 1, LIP UMR 5668, France

4. ICTEAM/INMA, UCLouvain, Belgium

5. RWTH Aachen University, Chair for Mathematics of Information Processing, Pontdriesch 10, 52056 Aachen, Germany

Abstract

We investigate the problem of recovering jointly [Formula: see text]-rank and [Formula: see text]-bisparse matrices from as few linear measurements as possible, considering arbitrary measurements as well as rank-one measurements. In both cases, we show that [Formula: see text] measurements make the recovery possible in theory, meaning via a nonpractical algorithm. In case of arbitrary measurements, we investigate the possibility of achieving practical recovery via an iterative-hard-thresholding algorithm when [Formula: see text] for some exponent [Formula: see text]. We show that this is feasible for [Formula: see text], and that the proposed analysis cannot cover the case [Formula: see text]. The precise value of the optimal exponent [Formula: see text] is the object of a question, raised but unresolved in this paper, about head projections for the jointly low-rank and bisparse structure. Some related questions are partially answered in passing. For rank-one measurements, we suggest on arcane grounds an iterative-hard-thresholding algorithm modified to exploit the nonstandard restricted isometry property obeyed by this type of measurements.

Funder

NSF

the NSF

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust sensing of low-rank matrices with non-orthogonal sparse decomposition;Applied and Computational Harmonic Analysis;2023-11

2. Semi-device-dependent blind quantum tomography;Quantum;2023-07-11

3. Riemannian thresholding methods for row-sparse and low-rank matrix recovery;Numerical Algorithms;2022-10-29

4. Hierarchical Compressed Sensing;Compressed Sensing in Information Processing;2022

5. Dynamic System Fault Diagnosis Under Sparseness Assumption;IEEE Transactions on Signal Processing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3