Non-ergodic linear convergence property of the delayed gradient descent under the strongly convexity and the Polyak–Łojasiewicz condition

Author:

Choi Hyung Jun1ORCID,Choi Woocheol2ORCID,Seok Jinmyoung3ORCID

Affiliation:

1. School of Liberal Arts, Korea University of Technology and Education, Cheonan 31253, Republic of Korea

2. Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

3. Department of Mathematics Education, Seoul National University, Seoul 08826, Republic of Korea

Abstract

In this work, we establish the linear convergence estimate for the gradient descent involving the delay [Formula: see text] when the cost function is [Formula: see text]-strongly convex and [Formula: see text]-smooth. This result improves upon the well-known estimates in [Y. Arjevani, O. Shamir and N. Srebro, A tight convergence analysis for stochastic gradient descent with delayed updates, Proc. Mach. Learn. Res. 117 (2020) 111–132; S. U. Stich and S. P. Karimireddy, The error-feedback framework: Better rates for SGD with delayed gradients and compressed updates, J. Mach. Learn. Res. 21(1) (2020) 9613–9648] in the sense that it is non-ergodic and is still established in spite of weaker constraint of cost function. Also, the range of learning rate [Formula: see text] can be extended from [Formula: see text] to [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], where [Formula: see text] is the Lipschitz continuity constant of the gradient of cost function. In a further research, we show the linear convergence of cost function under the Polyak–Łojasiewicz[Formula: see text](PL) condition, for which the available choice of learning rate is further improved as [Formula: see text] for the large delay [Formula: see text]. The framework of the proof for this result is also extended to the stochastic gradient descent with time-varying delay under the PL condition. Finally, some numerical experiments are provided in order to confirm the reliability of the analyzed results.

Funder

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Ltd

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3