Affiliation:
1. College of Mathematics and Information Science, Guangxi University, East Daxue Road No. 100, 530004 Nanning, Guangxi, P. R. China
Abstract
Though the alternating least squares algorithm (ALS), as a classic and easily implemented algorithm, has been widely applied to tensor decomposition and approximation problems, it has some drawbacks: the convergence of ALS is not guaranteed, and the swamp phenomenon appears in some cases, causing the convergence rate to slow down dramatically. To overcome these shortcomings, the regularized-ALS algorithm (RALS) was proposed in the literature. By employing the optimal step-size selection rule, we develop a self-adaptive regularized alternating least squares method (SA-RALS) to accelerate RALS in this paper. Theoretically, we show that the step-size is always larger than unity, and can be larger than [Formula: see text], which is quite different from several optimization algorithms. Furthermore, under mild assumptions, we prove that the whole sequence generated by SA-RALS converges to a stationary point of the objective function. Numerical results verify that the SA-RALS performs better than RALS in terms of the number of iterations and the CPU time.
Funder
National Natural Science Foundation of China
Guangxi Natural Science Key Fund
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献