Symbolic calculus and M-ellipticity of pseudo-differential operators on ℤn

Author:

Kumar Vishvesh1ORCID,Mondal Shyam Swarup2ORCID

Affiliation:

1. Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Building S8, Krijgslaan, 281, Ghent B-9000, Belgium

2. Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Abstract

In this paper, we introduce and study a class of pseudo-differential operators on the lattice [Formula: see text]. More preciously, we consider a weighted symbol class [Formula: see text] associated to a suitable weight function [Formula: see text] on [Formula: see text]. We study elements of the symbolic calculus for pseudo-differential operators associated with [Formula: see text] by deriving formulae for the composition, adjoint and transpose. We define the notion of [Formula: see text]-ellipticity for symbols belonging to [Formula: see text] and construct the parametrix of [Formula: see text]-elliptic pseudo-differential operators. Further, we investigate the minimal and maximal extensions for [Formula: see text]-elliptic pseudo-differential operators and show that they coincide on [Formula: see text] subject to the [Formula: see text]-ellipticity of symbols. We also determine the domains of the minimal and maximal operators. Finally, we discuss Fredholmness and compute the index of [Formula: see text]-elliptic pseudo-differential operators on [Formula: see text].

Funder

FWO Odysseus 1

The Ghent University Special Research Fund

FWO Senior Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Essential Adjointness of Pseudo-Differential Operators on $$\mathbb {Z}^n$$;Complex Analysis and Operator Theory;2024-09

2. Weighted periodic and discrete pseudo-differential Operators;Monatshefte für Mathematik;2024-04-11

3. Extended Sobolev scale on $$\mathbb {Z}^n$$;Journal of Pseudo-Differential Operators and Applications;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3