Summability of Fourier transforms on mixed-norm Lebesgue spaces via associated Herz spaces

Author:

Huang Long1,Weisz Ferenc2,Yang Dachun1,Yuan Wen1

Affiliation:

1. Laboratory of Mathematics and Complex Systems, (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China

2. Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány 1/C., Budapest 1117, Hungary

Abstract

Let [Formula: see text], [Formula: see text] be the mixed-norm Lebesgue space, and [Formula: see text] an integrable function. In this paper, via establishing the boundedness of the mixed centered Hardy–Littlewood maximal operator [Formula: see text] from [Formula: see text] to itself or to the weak mixed-norm Lebesgue space [Formula: see text] under some sharp assumptions on [Formula: see text] and [Formula: see text], the authors show that the [Formula: see text]-mean of [Formula: see text] converges to [Formula: see text] almost everywhere over the diagonal if the Fourier transform [Formula: see text] of [Formula: see text] belongs to some mixed-norm homogeneous Herz space [Formula: see text] with [Formula: see text] being the conjugate index of [Formula: see text]. Furthermore, by introducing another mixed-norm homogeneous Herz space and establishing a characterization of this Herz space, the authors then extend the above almost everywhere convergence of [Formula: see text]-means to the unrestricted case. Finally, the authors show that the [Formula: see text]-mean of [Formula: see text] converges over the diagonal to [Formula: see text] at all its [Formula: see text]-Lebesgue points if and only if [Formula: see text] belongs to [Formula: see text], and a similar conclusion also holds true for the unrestricted convergence at strong [Formula: see text]-Lebesgue points. Observe that, in all these results, those Herz spaces to which [Formula: see text] belongs prove to be the best choice in some sense.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3