Top-Down Design of Human-Like Teachable Mind

Author:

Xie Ming1ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore

Abstract

Teachability has been extensively studied under the context of making industrial robots to be programmable and reprogrammable. However, it is only recently that the artificial intelligence (AI) research community is accelerating the research works with the objective of making humanoid robots and many other robots to be teachable under the context of using natural languages. We human beings spend many years learning knowledge and skills despite our extraordinary mental capabilities of being teachable with the use of natural languages. Therefore, if we would like to develop human-like robots such as humanoid robots, it is inevitable for us to face the issue of making future humanoid robots teachable with the use of natural languages as well. In this paper, we present the key details of a top-down design for achieving a teachable mind which consists of two major processes: the first one is the process that enables humanoid robots to gain innate mental capabilities of transforming incoming signals into meaningful crisp data, and the second one is the process which enables humanoid robots to gain innate mental capabilities of undertaking incremental and deep learning with the main focus of associating conceptual labels in a natural language to meaningful crisp data. These two processes consist of the two necessary and sufficient conditions for future humanoid robots to be teachable with the use of natural languages. In addition, this paper outlines a very likely new finding underlying the human brain’s neural systems as well as the obvious mathematics underlying artificial deep neural networks. These outlines provide us with a strong reason to separate the study of the mind from the study of the brain. Hopefully, the content discussed in this paper will help the AI research community to venture into the right direction which is to make future humanoid robots, non-humanoid robots, and many other systems to achieve human-like self-intelligence at the cognitive level with the use of natural languages.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3