Affiliation:
1. Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta GA 30332, USA
Abstract
Whole-arm tactile sensing enables a robot to sense contact and infer contact properties across its entire arm. Within this paper, we demonstrate that using data-driven methods, a humanoid robot can infer mechanical properties of objects from contact with its forearm during a simple reaching motion. A key issue is the extent to which the performance of data-driven methods can generalize to robot actions that differ from those used during training. To investigate this, we developed an idealized physics-based lumped element model of a robot with a compliant joint making contact with an object. Using this physics-based model, we performed experiments with varied robot, object and environment parameters. We also collected data from a tactile-sensing forearm on a real robot as it made contact with various objects during a simple reaching motion with varied arm velocities and joint stiffnesses. The robot used 1-nearest-neighbor (1-NN) classifiers, hidden Markov models (HMMs), and long short-term memory (LSTM) networks to infer two object properties (hard versus soft and moved versus unmoved) based on features of time-varying tactile sensor data (maximum force, contact area, and contact motion). We found that, in contrast to 1-NN, the performance of LSTMs (with sufficient data availability) and multivariate HMMs successfully generalized to new robot motions with distinct velocities and joint stiffnesses. Compared to single features, using multiple features gave the best results for both experiments with physics-based models and a real-robot.
Funder
Defense Advanced Research Projects Agency
Division of Emerging Frontiers in Research and Innovation
Division of Information and Intelligent Systems
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献