Improve Inter-day Hand Gesture Recognition Via Convolutional Neural Network-based Feature Fusion

Author:

Fang Yinfeng1,Zhang Xuguang1,Zhou Dalin2,Liu Honghai23

Affiliation:

1. College of Telecommunication, Hangzhou Dianzi University, 1158, No. 2 Avenue, Xiasha, Hangzhou 310018, P. R. China

2. Intelligent Systems and Biomedical Robotics Group, School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK

3. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

The learning of inter-day representation of electromyographic (EMG) signals across multiple days remains a challenging topic and not fully accommodated yet. This study aims to improve the inter-day hand motion classification accuracy via convolutional neural network (CNN)-based data feature fusion. An EMG database (ISRMyo-I) was recorded from six subjects on 10 days via a low density electrode setting. This study investigated CNNs’ capability of feature learning, and found that the output of the first fully connected layer (CNNFeats) was a decent supplement feature set to the most prevalent Hudgins’ time domain features in combination with fourth-order autoregressive coefficients (TDAR). Through adding the automatically learned CNNFeats to the handcrafted TDAR feature set, both linear discriminant analysis (LDA) and support vector machine (SVM) classifiers received [Formula: see text]3% accuracy improvement. Similarly, taking TDAR as additional input to the CNN improved the accuracy by [Formula: see text]1% in the comparison with the basic CNN. Our results also demonstrated that the CNN approach outperformed conventional approaches when multiple subjects’ data were available for training, while traditional approaches were more adept at presenting motion patterns for single subject. A preliminary conclusion is drawn that substantial “common knowledge/features” can be learned by CNNs from the raw EMG signals across multiple days and multiple subjects, and thus it is believed that a pre-trained CNN model would contribute to higher accuracy as well as the reduction of learning burden.

Funder

Zhejiang Provincial Natural Science Foundation of China

FP7 Ideas: European Research Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3