Human-Like Gait Adaptation to Slippery Surfaces for the NAO Robot Wearing Instrumented Shoes

Author:

Ferreira João P.12,Franco Guilherme2,Coimbra A. Paulo2,Crisóstomo Manuel2

Affiliation:

1. Institute Superior of Engineering of Coimbra, Quinta da Nora, 3030-199 Coimbra, Portugal

2. Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, 3030-290 Coimbra, Portugal

Abstract

Gait development for bipedal/humanoid robots has been a field of study with a lot of attention for several years and is becoming increasingly important as robots slowly become part of our daily lives. Therefore, it is expectable that robots should adopt human-like behaviors in order to make their interactions with humans more natural and studies have been made involving robots that have a natural, human-like gait. However, very few focus on scenarios with slippery floors. In this paper, the humanoid robot NAO is used and the effects of a human-based walking pattern on the robot’s balance when walking on floors with different slipperiness degrees were analyzed. The simulations are done having the robot equipped with specially developed shoes that enable the measurement of the friction coefficient. From that analysis, an algorithm that automatically adapts the gait parameters to the floor’s slipperiness was developed, in order to prevent the robot from suffering unexpected disturbances and possibly falling over. This paper focusses on preventing balance disturbances, instead of correcting them.

Funder

Automatic Adaptation of a Humanoid Robot Gait to Different Floor-Robot Friction Coefficients

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3