Reinforcement Learning-Based Approach to Robot Path Tracking in Nonlinear Dynamic Environments

Author:

Chen Wei1ORCID,Zhou Zebin1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Zhejiang Industry Polytechnic College, Shaoxing 312000, Zhejiang, P. R. China

Abstract

To address the issue of error-prone and unstable trajectory tracking and dynamic obstacle avoidance of mobile robots in locally observable nonlinear dynamic settings, a deep reinforcement learning (RL)-based visual perception, and decision-making system is proposed. The technique creates a closed loop between the system’s environmental perception and decision-making capabilities by combining the perceptual capabilities of convolutional neural networks with the decision-making capabilities of RL in a generic form. It achieves direct output control from the visual perception input of the environment to the action through end-to-end learning. The simulation results show that this approach is capable of meeting the demands of multi-task intelligent perception and decision making. It also more effectively addresses issues with traditional algorithms, including their tendency to fall into local optimums, oscillate in groups of similar obstacles without recognizing the path, oscillate in tight spaces and inaccessible targets close to obstacles and significantly enhance real-time and adaptability of robot trajectory tracking and dynamic obstacle avoidance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3