Tracking Object’s Pose via Dynamic Tactile Interaction

Author:

Lin Qiguang1ORCID,Yan Chaojie2,Li Qiang3,Ling Yonggen4,Lee Wangwei4,Zheng Yu4,Wan Zhaoliang5,Huang Bidan4,Liu Xiaofeng1

Affiliation:

1. Jiangsu Key Laboratory of Special Robotic Technology, College of IoT Engineering, Hohai University, Changzhou 213022, Jiangsu, P. R. China

2. State Key Laboratory of Industrial Control and Technology, Zhejiang University, Institute of Cyber-System and Control, Zhejiang University, Hangzhou, P. R. China

3. College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, P. R. China

4. Tencent Robotics X, Shenzhen, P. R. China

5. School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, P. R. China

Abstract

It is a challenging task to localize and track an in-hand object in robotic domain. Researchers were mainly using the vision as major modality for extracting object’s pose. The vision approaches are fragile when the object is occluded by the robotic arm and hand. To this end, we propose a tactile-based DTI-Tracker (tracking object’s pose via Dynamic Tactile Interaction) approach and formalize the object’s tracking as a filter problem. An Extended Kalman Filter (EKF) is used to estimate the in-hand object pose exploiting the high spatial resolution tactile feedback. Given the initial estimation error, the proposed approach rapidly converges the estimation result to the real pose and the statistic evaluation shows the robustness of the proposed approach. We evaluate this method in physics simulation and real multi-fingered grasping setup while the object is static and movable. The proposed method is a potential tool to foster future research on dexterous manipulation using multifingered robotic hand.

Funder

Deutsche Forschungsgemeinschaft

National Key Research and Development Program

Key Research and Development Program of Jiangsu

International and Exchanges of Changzhou

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3