Human Action Recognition Based on Normalized Interest Points and Super-Interest Points

Author:

Wang Yangyang1,Li Yibo2,Ji Xiaofei2

Affiliation:

1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Automation, Shenyang Aerospace University, Shenyang 110136, China

Abstract

Visual-based human action recognition is currently one of the most active research topics in computer vision. The feature representation directly has a crucial impact on the performance of the recognition. Feature representation based on bag-of-words is popular in current research, but the spatial and temporal relationship among these features is usually discarded. In order to solve this issue, a novel feature representation based on normalized interest points is proposed and utilized to recognize the human actions. The novel representation is called super-interest point. The novelty of the proposed feature is that the spatial-temporal correlation between the interest points and human body can be directly added to the representation without considering scale and location variance of the points by introducing normalized points clustering. The novelty concerns three tasks. First, to solve the diversity of human location and scale, interest points are normalized based on the normalization of the human region. Second, to obtain the spatial-temporal correlation among the interest points, the normalized points with similar spatial and temporal distance are constructed to a super-interest point by using three-dimensional clustering algorithm. Finally, by describing the appearance characteristic of the super-interest points and location relationship among the super-interest points, a new feature representation is gained. The proposed representation formation sets up the relationship among local features and human figure. Experiments on Weizmann, KTH, and UCF sports dataset demonstrate that the proposed feature is effective for human action recognition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3