Affiliation:
1. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (HIT), Harbin 150001, P. R. China
Abstract
In this paper, a set of grasp-function-dependent and joint-element-sparse hand synergies was proposed. First, hand synergies were extracted from five basic categories of movements by principal component analysis (PCA). Then, varimax rotation was applied on these synergies, so each sparse synergy only represented a limited number of joints. Next, according to the contribution to these sparse synergies, finger joints were clustered into different joint modules. Finally, integrating the joint modules in different categories of hand movements, the minimum number of actuators and joint synergic modules for anthropomorphic hands were determined. The results showed that using 5 groups of joint modules and 7–9 actuators we can achieve the best performance of grasp function and motion flexibility. Furthermore, through the reasonable design of adaptive and hyperextension functional joint modules, anthropomorphic hands can better meet the requirements of different tasks like power grasping and precision pinching. Comparing with traditional finger-based actuation strategy, the joint coupling scheme achieved better anthropomorphic performance and larger workspace. These above findings will benefit the development of mechanical structure design and control method of anthropomorphic hands.
Funder
China National Key Research and Development Program
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献