Intelligent Image Processing Technology for Badminton Robot under Machine Vision of Internet of Things

Author:

Ye Haishan1

Affiliation:

1. Physical Education Department, Gansu University of Political Science and Law, Lanzhou 730070, Gansu, P. R. China

Abstract

The present work aims to promote the development of intelligent image processing technology for badminton robots and optimize the application effect of badminton robots in national fitness. Firstly, the problems and common needs of the badminton robot currently in use are investigated. Secondly, a shuttlecock aerodynamic model is established to simulate the effects of air resistance and gravity on the aerial flight of shuttlecock. Besides, the convolution neural network (CNN) is combined with traditional image processing technology to denoise and recognize the collected shuttlecock images. Finally, the badminton robot vision system is constructed and its performance is tested. The results demonstrate that the image denoising method based on CNN and the traditional image processing method can effectively process and denoise the captured moving image. Under the noise level of [Formula: see text], the peak signal-to-noise ratio index of this method is better than the Gaussian Scale Model, k-Singular Value Decomposition, and Color Names methods, slightly better than that of the Multilayer Perceptron (MLP) network. In terms of the time consumed in processing the same number of pictures, the method reported here takes the least time. But when [Formula: see text], the MLP method has a better denoising effect because the noise is overlarge and the features are not easy to learn. Moreover, the detection accuracy of the optimized Single Shot MultiBox Detector (SSD) method adopted here is 79.0%. This accuracy is 1.7% higher than that of the traditional SSD method, and 2.3% higher than that of Faster Region-Convolutional Neural Network based on Region Proposal Network. The optimized network structure reported here provides a certain idea for the software design of the badminton robot.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3