EVOLUTIONARY DESIGN OF SPIKING NEURAL NETWORKS

Author:

BELATRECHE AMMAR1,MAGUIRE LIAM P.1,MCGINNITY MARTIN1,WU QING XIANG1

Affiliation:

1. Intelligent Systems Engineering Laboratory, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Northland Road, Derry, BT48 7JL, Northern Ireland

Abstract

Unlike traditional artificial neural networks (ANNs), which use a high abstraction of real neurons, spiking neural networks (SNNs) offer a biologically plausible model of realistic neurons. They differ from classical artificial neural networks in that SNNs handle and communicate information by means of timing of individual pulses, an important feature of neuronal systems being ignored by models based on rate coding scheme. However, in order to make the most of these realistic neuronal models, good training algorithms are required. Most existing learning paradigms tune the synaptic weights in an unsupervised way using an adaptation of the famous Hebbian learning rule, which is based on the correlation between the pre- and post-synaptic neurons activity. Nonetheless, supervised learning is more appropriate when prior knowledge about the outcome of the network is available. In this paper, a new approach for supervised training is presented with a biologically plausible architecture. An adapted evolutionary strategy (ES) is used for adjusting the synaptic strengths and delays, which underlie the learning and memory processes in the nervous system. The algorithm is applied to complex non-linearly separable problems, and the results show that the network is able to perform learning successfully by means of temporal encoding of presented patterns.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3