PROGRESSIVE STRATEGIES FOR MONTE-CARLO TREE SEARCH

Author:

CHASLOT GUILLAUME M. J-B.1,WINANDS MARK H. M.1,HERIK H. JAAP VAN DEN1,UITERWIJK JOS W. H. M.1,BOUZY BRUNO2

Affiliation:

1. MICC-IKAT, Games and AI Group, Faculty of Humanities and Sciences, Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Centre de Recherche en Informatique de Paris 5, Université Paris 5 Descartes, 45, rue des Saints Pères, 75270 Cedex 06, France

Abstract

Monte-Carlo Tree Search (MCTS) is a new best-first search guided by the results of Monte-Carlo simulations. In this article, we introduce two progressive strategies for MCTS, called progressive bias and progressive unpruning. They enable the use of relatively time-expensive heuristic knowledge without speed reduction. Progressive bias directs the search according to heuristic knowledge. Progressive unpruning first reduces the branching factor, and then increases it gradually again. Experiments assess that the two progressive strategies significantly improve the level of our Go program Mango. Moreover, we see that the combination of both strategies performs even better on larger board sizes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NetGAP: A graph grammar approach for concept design of networked platforms with extra-functional requirements;Engineering Applications of Artificial Intelligence;2024-07

2. Automated machine learning: past, present and future;Artificial Intelligence Review;2024-04-18

3. Incorporating Domain Knowledge Into Monte Carlo Tree Search in Dark Chess;2024 10th International Conference on Applied System Innovation (ICASI);2024-04-17

4. A survey on model-based reinforcement learning;Science China Information Sciences;2024-01-23

5. Improvement of move naturalness for playing good-quality games with middle-level players;Applied Intelligence;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3