Chernoff approximation of subordinate semigroups

Author:

Butko Yana A.1

Affiliation:

1. Saarland University, Department of Mathematics, P. O. Box 15 11 50, D-66041, Saarbrücken, Germany

Abstract

This note is devoted to the approximation of evolution semigroups generated by some Markov processes and hence to the approximation of transition probabilities of these processes. The considered semigroups correspond to processes obtained by subordination (i.e. by a time-change) of some original (parent) Markov processes with respect to some subordinators, i.e. Lévy processes with a.s. increasing paths (they play the role of the new time). If the semigroup, corresponding to a parent Markov process, is not known explicitly then neither the subordinate semigroup, nor even the generator of the subordinate semigroup are known explicitly too. In this note, some (Chernoff) approximations are constructed for subordinate semigroups (in the case when subordinators have either known transitional probabilities, or known and bounded Lévy measure) under the condition that the parent semigroups are not known but are already Chernoff-approximated. As it has been shown in the recent literature, this condition is fulfilled for several important classes of Markov processes. This fact allows, in particular, to use the constructed Chernoff approximations of subordinate semigroups, in order to approximate semigroups corresponding to subordination of Feller processes and (Feller type) diffusions in Euclidean spaces, star graphs and Riemannian manifolds. Such approximations can be used for direct calculations and simulation of stochastic processes. The method of Chernoff approximation is based on the Chernoff theorem and can be interpreted also as a construction of Markov chains approximating a given Markov process and as the numerical path integration method of solving the corresponding PDE/SDE.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modelling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chernoff approximations of Feller semigroups in Riemannian manifolds;Mathematische Nachrichten;2022-10-13

2. Operator Approach to Weak Convergence of Measures and Limit Theorems for Random Operators;Lobachevskii Journal of Mathematics;2021-10

3. Random Quantization of Hamiltonian Systems;Doklady Mathematics;2021-05

4. Dirichlet Problem for Poisson Equation on the Rectangle in Infinite Dimensional Hilbert Space;Applied Mathematics and Nonlinear Sciences;2020-06-30

5. The Method of Chernoff Approximation;Semigroups of Operators – Theory and Applications;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3