AN OPTIMAL MARKOVIAN QUANTIZATION ALGORITHM FOR MULTI-DIMENSIONAL STOCHASTIC CONTROL PROBLEMS

Author:

PAGÈS GILLES1,PHAM HUYÊN23,PRINTEMS JACQUES4

Affiliation:

1. Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris 6, France

2. Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris 7, France

3. CREST, Laboratoire de Finance-Assurance, France

4. Centre de Mathématiques, CNRS, UMR 8050, Université Paris 12, France

Abstract

We propose a probabilistic numerical method based on optimal quantization to solve some multi-dimensional stochastic control problems that arise, for example, in mathematical finance for portfolio optimization. We then consider some controlled diffusions with most components control free. The Euler scheme of the uncontrolled diffusion part is approximated by a discrete time process obtained by a nearest neighbor projection on some grids optimally fitted to its dynamics. The resulting process is also designed to preserve the Markov property with respect to the filtration of the Euler scheme. This Markovian quantization approach leads to an approximate control problem that can be solved numerically by the dynamic programming formula. This approach seems promising in higher dimension. A prioriLp-error bounds are stated and we show that the spatial discretization error term is minimal at some specific grids. A simple recursive algorithm is devised to compute these optimal grids by induction based on a Monte Carlo simulation. Some numerical illustrations are processed for solving a mean-variance hedging problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Modeling and Simulation

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Particle method and quantization-based schemes for the simulation of the McKean-Vlasov equation;ESAIM: Mathematical Modelling and Numerical Analysis;2024-03

2. On parametric optimal execution and machine learning surrogates;Quantitative Finance;2023-12-19

3. Dynamic Programming versus supervised learning;Numerical Control: Part A;2022

4. A Machine Learning Approach to Adaptive Robust Utility Maximization and Hedging;SIAM Journal on Financial Mathematics;2021-01

5. Change‐point Detection for Piecewise Deterministic Markov Processes;Mathematical Modeling of Random and Deterministic Phenomena;2020-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3