The three kinds of degree distributions and nash equilibrium on the limiting random network

Author:

Han Dong1,Xia Min1

Affiliation:

1. Department of Statistics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract

A generalized dynamically evolving random network and a game model taking place on the evolving network are presented. We show that there exists a high-dimensional critical curved surface of the parameters related the probabilities of adding or removing vertices or edges such that the evolving network may exhibit three kinds of degree distributions as the time goes to infinity when the parameters belong to the super-critical, critical and sub-critical curved surfaces, respectively. Some sufficient conditions are given for the existence of a regular Nash equilibrium which depends on the three kinds of degree distributions in the game model on the limiting random network.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3