A general renormalization procedure on the one-dimensional lattice and decay of correlations

Author:

Lopes Artur O.1

Affiliation:

1. UFRGS, Instituto de Matemática e Estatística, Av. Bento Gonçalves 9500, CEP 91509-900, Porto Alegre, RS, Brazil

Abstract

We present a general form of renormalization operator [Formula: see text] acting on potentials [Formula: see text]. We exhibit the analytical expression of the fixed point potential [Formula: see text] for such operator [Formula: see text]. This potential can be expressed in a natural way in terms of a certain integral over the Hausdorff probability on a Cantor type set on the interval [0,1]. This result generalizes a previous one by Baraviera, Leplaideur and Lopes where the fixed point potential [Formula: see text] was of Hofbauer type. For the potentials of Hofbauer type (a well-known case of phase transition) the decay is like [Formula: see text], [Formula: see text]. Among other things we present the estimation of the decay of correlation of the equilibrium probability associated to the fixed potential [Formula: see text] of our general renormalization procedure. In some cases we get polynomial decay like [Formula: see text], [Formula: see text], and in others a decay faster than [Formula: see text], when [Formula: see text]. The potentials [Formula: see text] we consider here are elements of the so-called family of Walters’ potentials on [Formula: see text] which generalizes a family of potentials considered initially by Hofbauer. For these potentials some explicit expressions for the eigenfunctions are known. In a final section we also show that given any choice [Formula: see text] of real numbers varying with [Formula: see text] there exists a potential [Formula: see text] on the class defined by Walters which has a invariant probability with such numbers as the coefficients of correlation (for a certain explicit observable function).

Publisher

World Scientific Pub Co Pte Lt

Subject

Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3