Affiliation:
1. School of Mathematics and Physics, The University of Queensland, Saint Lucia, Queensland 4072, Australia
Abstract
In this paper, we investigate the existence of random absolutely continuous invariant measures (ACIP) for random expanding on average Saussol maps in higher dimensions. This is done by the establishment of a random Lasota–Yorke inequality for the transfer operators on the space of bounded oscillation. We prove that the number of ergodic skew product ACIPs is finite and will provide an upper bound for the number of these ergodic ACIPs. This work can be seen as a generalization of the work in [F. Batayneh and C. González-Tokman, On the number of invariant measures for random expanding maps in higher dimensions, Discrete Contin. Dyn. Syst. 41 (2021) 5887–5914] on admissible random Jabłoński maps to a more general class of higher-dimensional random maps.
Publisher
World Scientific Pub Co Pte Ltd
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献