On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations

Author:

Beck Christian12ORCID,Hutzenthaler Martin3,Jentzen Arnulf124

Affiliation:

1. Applied Mathematics Münster: Institute for Analysis and Numerics, University of Münster, Einsteinstraße 62, 48149 Münster, Germany

2. Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zürich, Switzerland

3. Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany

4. School of Data Science and Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, 2001 Longxiang Road, 518172 Shenzhen, China

Abstract

The classical Feynman–Kac identity builds a bridge between stochastic analysis and partial differential equations (PDEs) by providing stochastic representations for classical solutions of linear Kolmogorov PDEs. This opens the door for the derivation of sampling based Monte Carlo approximation methods, which can be meshfree and thereby stand a chance to approximate solutions of PDEs without suffering from the curse of dimensionality. In this paper, we extend the classical Feynman–Kac formula to certain semilinear Kolmogorov PDEs. More specifically, we identify suitable solutions of stochastic fixed point equations (SFPEs), which arise when the classical Feynman–Kac identity is formally applied to semilinear Kolmorogov PDEs, as viscosity solutions of the corresponding PDEs. This justifies, in particular, employing full-history recursive multilevel Picard (MLP) approximation algorithms, which have recently been shown to overcome the curse of dimensionality in the numerical approximation of solutions of SFPEs, in the numerical approximation of semilinear Kolmogorov PDEs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

World Scientific Pub Co Pte Ltd

Subject

Modelling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3