Affiliation:
1. Departamento de Matematica, UFAL, Campus A.S. Simoes, s/n 57072-090 Maceió, Alagoas, Brazil
Abstract
We prove the existence of relative maximal entropy measures for certain random dynamical systems of the type [Formula: see text], where [Formula: see text] is an invertibe map preserving an ergodic measure [Formula: see text] and [Formula: see text] is a local diffeomorphism of a compact Riemannian manifold exhibiting some non-uniform expansion. As a consequence of our proofs, we obtain an integral formula for the relative topological entropy as the integral of the logarithm of the topological degree of [Formula: see text] with respect to [Formula: see text]. When [Formula: see text] is topologically exact and the supremum of the topological degree of [Formula: see text] is finite, the maximizing measure is unique and positive on open sets.
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献