Stochastic averaging for a completely integrable Hamiltonian system with fractional Brownian motion

Author:

Wang Ruifang1,Xu Yong23ORCID,Pei Bin24

Affiliation:

1. School of Mathematics, Shanxi University, Taiyuan 030006, P. R. China

2. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, P. R. China

3. MOE Key Laboratory of Complexity Science in Aerospace, Northwestern Polytechnical University, Xi’an 710072, P. R. China

4. Research & Development Institute, Northwestern Polytechnical University, Shenzhen, 518057, P. R. China

Abstract

This paper proposes an effective approximation result for the behavior of a small transversal perturbation to a completely integrable stochastic Hamiltonian system on a symplectic manifold. We derive an averaged stochastic differential equations (SDEs) in the action space for the action component of the perturbed system, where the averaged drift coefficient is characterized by the averages of that of the action component with respect to the invariant measure of the unperturbed system on the corresponding invariant manifolds. Then, the averaging principle is shown to be valid such that the action component of the perturbed system converges to the solution of averaged SDEs in the mean square sense.

Funder

the Key International (Regional) Joint Research Program of the National Science Foundation of China

National Natural Science Foundation of China

the Guangdong Basic and Applied Basic Research Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3