Optimal impulsive control in RNA interference mediated by exogenous dsRNA with physiological delays

Author:

Li Changguo1,Pei Yongzhen2ORCID,Liu Zhenzhen1,Zhang Ruimin2

Affiliation:

1. Department of Basic Science, Army Military Transportation University, Tianjin, 300361 P. R. China

2. School of Mathematical Sciences, Tiangong University, Tianjin, 300387 P. R. China

Abstract

Therapeutic agents acting on RNA, including RNA modification, RNA editing and RNA interference (RNAi), play a vital role in gene function study, signaling pathway, drug discovery, disease treatment, vaccine development and so on. Therein, RNAi as an emerging gene therapy has been widely applied in many cancer studies by silencing oncogenes or specific mRNA in malignant tumor cells. Mechanism and efficiency of RNAi are the key issues of RNAi technology. RNA silencing involves dynamic modeling, analyses and optimal control of RNAi gene system. Physiological delay and Hill response describing off-target are considerable elements involving RNAi efficiency. In this paper, we first formulate a four-dimensional RNAi model with time delays and Hill functions, and then investigate the complex dynamic behaviors including the number, existence and stability of internal equilibria and Hopf bifurcations of single delay and two delays. Furthermore, based on the specific mRNA degradation adopted in impulsive patterns, we build an optimal problem by adding exogenous dsRNA at alterable time points in variable dosages in a treatment session. By the method of gradient formula, we can find the optimal impulsive time and proportion of dsRNA. Finally, simulation indicates that (1) physiological lags not only raise the oscillations of mRNA but also cut down the levels of cost; (2) smaller delays and larger rates of siRNA–mRNA complex formation and dsRNA synthesis imply the rapid composition of RISC and fast synthesis of dsRNA leading to more desirable therapeutic schedule, which affords evidence for gene regulation and RNAi; (3) a larger half-saturation coefficient characterizes a unique and stable higher targeted mRNA, whereas a smaller half-saturation coefficient generates bistability in which the higher and lower targeted mRNAs simultaneously emerge; and (4) the bistability will provide a good guidance to control, suppress and degrade targeted mRNA.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3